High-Throughput Single Molecule Analysis Instrument

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-06ER84429
Agency Tracking Number: 80466S06-I
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2006
Solitcitation Year: 2005
Solitcitation Topic Code: 08
Solitcitation Number: DE-FG01-05ER05-28
Small Business Information
Radiation Monitoring Devices, Inc.
44 Hunt Street, Watertown, MA, 02472
Duns: N/A
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Rajan Gurjar
 Dr.
 (617) 668-8290
 RGurjar@RMDInc.com
Business Contact
 Gerald Entine
Title: Dr.
Phone: (617) 668-6800
Email: GEntine@RMDInc.com
Research Institution
N/A
Abstract
The analysis and control of single macromolecules is an important goal of the DOE¿s Genome-to-Life Program. However, single molecule assays that use fluorescent dyes are not photostable, have low quantum yield, and have broad emission spectra. Conventional, confocal, fluorescence correlation microscopes use only one pair of detectors, have low throughput, lack multiparameter analysis, are inefficient, and cannot address multiple excitation and detection of the sample zones. This project will employ an array of fast microavalanche photodiodes to simultaneously detect several zones of the probing volume and use fluorescence-coincident analysis for high throughput screening. Innovative fluorescence-enhancing, nanostructured metallic substrates will be employed to enhance the quantum yield from any type of fluorescent molecule. Phase I will develop thin metallic substrates with 50-400 nm rectangular hole arrays to enhance single molecule fluorescence. Quantum dots will be conjugated to DNA molecules and will be used as fluorescent probes. Coincident burst analysis will be employed to detect the hybridization of a DNA to its conjugate. Optimal speed and the detection limits will be determined using 2-4 pairs of microavalanche photodiodes. Statistical analysis for quantum dot assays and enhancement factors will be performed. Commercial Applications and Other Benefits as described by the applicant: A microavalanche photodiode array with coincident analysis and sample scanning should increase the throughput for bioassay screening of extremely dilute amounts of pathogens. The resulting instrument should be useful for drug discovery and bioassaying, and for the study of biomolecular interactions, molecular and subcellular dynamics, enzyme kinetics, and structural/conformational changes in proteins or RNAs

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government