Multibeam Healing for Laser Micromachining in Manufacturing

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$198,585.00
Award Year:
2006
Program:
SBIR
Phase:
Phase I
Contract:
1R43EB005646-01A1
Award Id:
80011
Agency Tracking Number:
EB005646
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
RADIATION MONITORING DEVICES, INC. (Currently Radiation Monitoring Devices, Inc)
44 Hunt Street, Watertown, MA, 02472
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
BIPIN SINGH
(617) 668-6934
BSINGH@RMDINC.COM
Business Contact:
GERALD ENTINE
(617) 668-6801
GENTINE@RMDINC.COM
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): There is a considerable interest in using laser-manufacturing methods for medical applications due to their potential to reduce cost. In fact, the precision and low-force signature of lasers makes them very attractive alternatives to traditional machining methods for brittle materials such as lutetium oxyorthosilicate (LSO) and gadolinium oxyorthosilciate (GSO) used in high-resolution medical imaging. However, material damage, especially micro-scale cracking, during laser machining is a frequently encountered problem that results in added costs, needless scrap, and reduced performance/reliability. We propose to demonstrate the feasibility of developing a multibeam laser healing technique to eliminate micro-cracks formed during laser machining of brittle materials like scintillators. We will use a simultaneous multibeam approach for micromachining and defect healing to improve the strength/reliability during laser manufacturing. Experimental investigations will be supported by finite-element modeling of the process including the calculation of damage inducing thermal-stresses. The proposed research on laser healing will significantly improve both yield and reliability during laser machining, resulting in an order of magnitude reduction in cost. Additionally, the reduced inter-pixel gaps resulting from the laser pixelation technique will significantly improve detector performance. Therefore, the proposed research has great commercial relevance, especially for high-resolution medical imaging applications.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government