Bright and Fast Sensor for Time Resolved X-Ray Diffraction Studies

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$135,116.00
Award Year:
2007
Program:
SBIR
Phase:
Phase I
Contract:
1R43RR024272-01
Award Id:
85978
Agency Tracking Number:
RR024272
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
44 Hunt Street, Watertown, MA, 02472
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
073804411
Principal Investigator:
VIVEKNAGARKAR
(617) 668-6937
VNAGARKAR@RMDINC.COM
Business Contact:
GERALDENTINE
() -
gentine@rmdinc.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Recent extraordinary developments in synchrotron radiation sources have enabled the growth of powerful research techniques such as time-resolved X-ray diffraction studies for understanding dynamic biological phenomena a nd recovering phase information in X-ray crystallography. To make the most effective use of these advanced synchrotron sources for important protein studies, however, new, efficient, high- throughput detectors are needed. Such detectors will enhance the qu ality of the molecular model, which is the end product of the macromolecular crystallography process. Toward achieving this goal, several novel readouts based on new designs of charge-coupled devices have been developed. However, current X-ray-to- light co nverters that provide low light conversion efficiency, low X-ray absorption, and a tradeoff between spatial resolution and efficiency significantly limit the performance of these powerful devices. To address these issues, we propose to develop a novel semi conductor scintillator that promises to produce as much as a three-fold increase in light yield over the known brightest scintillators, high X-ray absorption due to its high density and high effective atomic number, a fast decay without any afterglow, emis sion in the wavelength range that is most suitable for CCD-type devices, and orders of magnitude higher radiation resistance than current scintillators. Beyond the excellent scintillation properties of this new and advanced scintillator, it will be fabrica ted in a microcolumnar form, which will provide very high spatial resolution. When combined with a suitable readout, this scintillator will enable realization of the high speed, large area, high resolution detectors needed for important time-resolved X-ray diffraction and other studies. The goal of the proposed Phase I research is to demonstrate the feasibility of developing the novel scintillator in the described microcolumnar structure using vapor deposition fabrication techniques developed and proven by RMD. After fabrication, the films will be characterized in detail in terms of their morphology, scintillation properties, optical properties and imaging performance at RMD. Films will then be integrated into a specially developed high-speed readout by RMD and evaluated at the BioCAT beam line at the Advanced Photon Source (APS), Argonne National Laboratory, Chicago, IL, to demonstrate their performance superiority compared to current state-of-the-art scintillator screens. During the proposed Phase I/Phase I I research, we will undertake efforts to successfully develop and market these screens through our own resources and in collaboration with our commercial partners. Applications of a scintillator with very bright emission, high spatial resolution, high X-ra y absorption efficiency, and rapid decay time with no afterglow range widely - from macromolecular crystallography to medical imaging, and from nondestructive testing to polymer research. As such, the commercial potential for this sensor is particularly hi gh. We and our collaborators at the APS believe that due to its extraordinary properties, this scintillator will have widespread use in many important synchrotron-based applications. The proposed research will develop and evaluate a unique scintillator tha t will provide a factor of three higher light than the brightest commercial scintillators, emission in the red region of the spectrum, high density and high effective atomic number, fast decay time with no afterglow, and orders of magnitude higher radiatio n resistance compared to the best current scintillators. The availability of such a sensor will enable advancements in the high speed X-ray imaging detector technology needed for many critically important biological studies, such as static and time-resolve d scattering from macromolecules. In turn, this will facilitate addressing the important protein folding problem and the study of phase transitions in mod

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government