High Reliability, Miniature Personal Hypoxia Monitoring System

Award Information
Agency:
Department of Defense
Branch
Navy
Amount:
$79,998.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
N68335-09-C-0289
Award Id:
92399
Agency Tracking Number:
N091-018-0595
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
44 Hunt Street, Watertown, MA, 02472
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
073804411
Principal Investigator:
Rajan Gurjar
Senior Scientist
(617) 668-6800
MSeetamraju@rmdinc.com
Business Contact:
Gerald Entine
Senior Scientist
(617) 668-6800
gentine@rmdinc.com
Research Institution:
n/a
Abstract
Accidental reduction in the oxygen available to a fighter pilot at high altitudes can lead to insidious hypoxia, where symptoms are almost unnoticeable before loss of consciousness in less than a minute. Under such situations, an accurate hypoxia monitoring unit that can predict the early onset of hypoxia - leaving sufficient time for the pilot to take remedial action - is essential. The existing commercially available technique for hypoxia monitoring, pulse oximetry, measures arterial hemoglobin oxygen saturation (SO2), but has been proven an unreliable technique for the monitoring of in-flight hypoxia. Radiation Monitoring Devices (RMD) proposes to develop a real-time, versatile near infrared spectroscopic (NIRS) instrument that can detect the onset of hypoxia with minimal false positive and false negative rates. The NIRS instrument will simultaneously measure multiple physiological parameters apart from the blood oxygen saturation, in order to infer the onset of hypoxia with no false negative rates. The instrument will also have no false positives that can cause unnecessary distraction to the pilot during crucial situations. For comfort and safety reasons, the instrument will be made highly compact and non-invasive, and will not interfere with any of the numerous life supporting equipment worn by the pilot. Additionally, the monitor will take into account the statistical variation in an individual's response to altitude and reduced pressure, to improve its accuracy and make it more universal. The Phase II prototype will be tested in hypobaric chambers used for pilot training at the end of the program.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government