An Ultra-Lightweight, High Performance Carbon-Carbon Space Radiator

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$598,926.00
Award Year:
2004
Program:
SBIR
Phase:
Phase II
Contract:
NNC04CA03C
Agency Tracking Number:
023005
Solicitation Year:
2002
Solicitation Topic Code:
H3.07
Solicitation Number:
n/a
Small Business Information
Allcomp, Inc.
209 Puente Ave., City of Industry, CA, 91746-2304
Hubzone Owned:
N
Socially and Economically Disadvantaged:
Y
Woman Owned:
N
Duns:
000000000
Principal Investigator:
William Miller
Principal Investigator
(626) 369-1273
bill.miller@allcomp.net
Business Contact:
William Miller
Vice-President
(626) 369-1273
bill.miller@allcomp.net
Research Institution:
n/a
Abstract
Our research program is focused on achieving high thermal performance in a high temperature carbon-carbon (C-C) radiator especially designed to fulfill present and future challenges in outer space applications. The radiator is one of the key parts in heat rejection systems, in both power conversion technologies for solar and space nuclear electric propulsion. An advanced radiator must provide high thermal performance with minimum mass while satisfying launch and deployment considerations. Traditional metal based radiators and single phase pumped heat transport loops are inadequate for the emerging demands; metal based high temperature radiators usually are over 8 ~ 10kg/m2. C-C composite materials are ideal candidates to solve this challenge because of their series of advantages, such as very low density, high thermal conductivity, good mechanical properties, high flexibility and variability in thermal and structural properties by tailoring their composite constituents. In combination with heat pipes, two-phase Capillary Pumped Loops (CPL) and Loop Heat Pipes (LHP) or other two-phase heat transport loops, overall thermal performance and reliability of the space radiators can be significantly improved and realized by reducing radiator mass, which is a big portion of overall spacecraft mass.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government