Model-Based Fusion of Multiple Look SAR for Automatic Target Recognition

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: F33615-01-M-1921
Agency Tracking Number: 011SN-0584
Amount: $99,091.00
Phase: Phase I
Program: SBIR
Awards Year: 2001
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
50 Mall Road, Burlington, MA, 01803
DUNS: 094841665
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Gil Ettinger
 Dir. of Image Processing
 (781) 273-3388
Business Contact
 Andrew Mullin
Title: Gen Counsel & Dir of Cont
Phone: (781) 273-3388
Research Institution
We propose to develop and evaluate robust model-based approaches to combat ID by fusing multi-look SAR imagery of ground vehicles. We have already developed a baseline decision-level multi-look fusion approach, based on the MSTAR system, that accumulatesevidence over target type. Extensive evaluation of this multi-look system has indicated significant target identification performance benefits. Under this proposed effort we will develop, implement, and analyze several improvements to the decision-levelfusion strategy: (1) hypothesis-level fusion, where we accumulate evidence not only over target type but also of target pose, thereby ensuring consistent interpretation across all the images; and (2) feature-level fusion, where we accumulate evidenceover parts of the model, thereby correctly accounting for model region visibility across the multiple views. As we increase the fidelity of the multi-look fusion approach, we also require finer image registration requirements. To support accurateregistration we propose to apply our hierarchical pixel/feature/region registration algorithms, which have proved to be effective on related applications. In order to analyze the performance tradeoffs of the different multi-look approaches and understandtheir benefits and limitations, we will perform extensive analysis on available in-house multi-look MSTAR SAR imagery covering a broad range of operating conditions.The technology developed under this program will contribute directly to the overallmilitary objective of improving automatic combat identification from SAR imagery for a variety of targets and under a variety of conditions. Specifically, multiple look fusion will improve identification performance, reduce false alarm rate, increaserobustness against variabilities of target and collection conditions, and achieve fine discrimination among similar targets. We anticipate that these methods could be used to automate SAR peacetime applications such as treaty compliance assessment andmonitoring. Moreover, model-based multi-look fusion techniques could be used for law enforcement applications as well as disease detection and diagnosis in 2D medical imagery.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government