Demonstration of a Continuous, Real-Time PM2.5 Chemical Speciation Monitor Based on an Aerosol Mass Spectrometer

Award Information
Agency: Environmental Protection Agency
Branch: N/A
Contract: EPD04008
Agency Tracking Number: BC3A2-0005
Amount: $70,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: C3-NCER-A2
Solicitation Number: PR-NC-03-10272
Solicitation Year: 2004
Award Year: 2004
Award Start Date (Proposal Award Date): 2004-03-01
Award End Date (Contract End Date): 2004-08-31
Small Business Information
45 Manning Road, Billerica, MA, 01821-3976
DUNS: 030817290
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Douglas Worsnop
 Dir.Cntr for Aerosol & Cloud Chem
 (978) 663-9500
Business Contact
 Charles Kolb
Title: President
Phone: (978) 663-9500
Research Institution
This Phase I research project addresses the need for improved monitoring technologies for continuous particulate mass and chemical speciation of ambient aerosols. During the last few years, Aerodyne Research, Inc., has developed an Aerosol Mass Spectrometer (AMS) instrument that measures ambient aerosol mass, chemical composition, and chemically speciated size distributions of nonrefractory submicron aerosol particles in real time. The AMS has been deployed successfully in more than 20 national and international field campaigns and has participated in several intercomparisons with a variety of independent instruments that highlight the capability of the AMS to quantitatively measure and classify particulate inorganics (ammonium, nitrate, sulfate, chloride) and organics (primary combustion, oxidized secondary compounds) in real time. The value of the AMS as a state-of-the-art aerosol research tool is underscored by its commercial success (20 instruments have been delivered to date). The goals of this SBIR Phase I research project are to develop a simpler, smaller, and cheaper autonomous prototype Aerosol Chemical Speciation Monitor (ACSM) based on the AMS and evaluate the performance of the ACSM for continuous monitoring applications by conducting side-by-side comparisons with filter measurement techniques. These goals will be accomplished through three tasks. The first task is to quantify the capability of the AMS to measure known composition laboratory PM2.5 aerosol, including supermicron and nonspherical particles. This involves the characterization of a new aerosol inlet system to increase supermicron collection efficiencies and the quantification of particle collection efficiencies using a new particle beam probe. The second task is to modify an existing AMS to test the concept of a simple, inexpensive ACSM that has the same quantitative capabilities of the original AMS. The third task is to directly compare the prototype ACSM with filter-based PM2.5 particulate mass and chemical speciation methods (Federal Reference Method and Particle Composition Method) for quantifying well-characterized laboratory-generated aerosol and ambient aerosol. In Phase II, Aerodyne Research, Inc., will build a prototype ACSM that can run autonomously for extended periods of time (without the need for expensive post-processing analyses) and deploy the system in the field. Whereas the commercial market for the existing AMS includes government and education research laboratories, the design of the proposed system will yield a simple, robust, and modestly priced aerosol chemical speciation instrument ideal for the regulatory monitoring market.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government