You are here

STTR Phase I: 3D Position Sensing Utilizing Wireless Low Frequency Magnetic Beacon and Its Application to a 3D Man-machine Interaction Device

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1448939
Agency Tracking Number: 1448939
Amount: $225,000.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: EW
Solicitation Number: N/A
Solicitation Year: 2014
Award Year: 2015
Award Start Date (Proposal Award Date): 2015-01-01
Award End Date (Contract End Date): 2015-12-31
Small Business Information
1050 Roxboro Street
West Lafayette, IN 47906
United States
DUNS: 079338677
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Harry Diamond
 (765) 415-0304
Business Contact
 Harry Diamond
Phone: (765) 415-0304
Research Institution
 Purdue University
 Byunghoo Jung
Young Hall 155 S. Grant Street
West Lafayette, IN 47907
United States

 Nonprofit College or University

The broader impact/commercial potential of this project will be to facilitate the creation of many applications utilizing a low-cost, high definition 3D motion-sensing device in many distinct areas including computing, entertainment, automation, robotics, industrial design, manufacturing, training, and education. For example, high-speed motion sensing without line-of-sight limitations can play an important role in understanding the dynamics of human body motion and ergonomics, allowing applications for sports and industrial training to evolve. The existing 
3D man-machine interaction market is segmented into a few small application areas and it remains small largely because of the limitations in existing technologies. The end users and solution providers still seek a compact, easy-to-use, and intuitive solution. This project will significantly enhance our understanding of wireless 3D motion tracking and its application to man-machine interface technology, resulting in an easy-to-use, fast and accurate 3D user interface device. As the mouse completely changed the way man and computer have connected over the last several decades, an easy-to-use, intuitive, and natural 3D man-computer interaction device will have great impact in the way we relate to computers/machines, resulting in a significant commercial impact in a broad range of application areas. This Small Business Technology Transfer Research (STTR) Phase I project will develop a wireless magnetic beacon-based 3D position sensor and its application to a 3D man-computer user interface. Existing 3D position tracking solutions for applications requiring 3D man-machine interaction utilize optical video sensors, infrared sensors, inertial sensors, ultrasound sensors or bending sensors. Despite recent progress, various fundamental challenges remain, including a line-of-sight requirement and the lack of haptic-feedback when using optical sensing, and the drift issue for inertial sensing. The proposed technology utilizes a magnetic beacon signal, and the unique characteristics of the proposed 3D user interface device include non-line-of-sight capability, absolute position and orientation tracking without drift, haptic feedback capability, low computational load, high accuracy, and high read speed. Anticipated applications include input devices for CAD design, digital art, 3D medical imaging systems handling 3D MRI, CT, and inner organ images, and educational devices requiring 3D interaction. The developed 3D device will significantly improve the work productivity of end users through its compact size and intuitive way of use. It will also provide a new opportunity for application developers to build cost-effective yet powerful 3D interaction-based design, educational, instructional and training apps.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government