Reconfigurable Multiresolution Targeting System

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: N/A
Agency Tracking Number: 36312
Amount: $690,455.00
Phase: Phase II
Program: SBIR
Awards Year: 1998
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
30 Wilson Road, Buffalo, NY, 14221
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Fenglei L. Du
 (716) 631-0610
Business Contact
Phone: () -
Research Institution
Robust and scale/rotation/aspect-invariant target detection/recognition is of great importance for image based sensing platforms to be used for guidance applications. This Small Business Innovation Research Phase I program will investigate the feasibility of a hierarchical target detection/recognition approach for robust, semi-affine-invariant target detection and recognition for hierarchical foveal machine vision (HFMV) based targeting systems. The system is organized into three hierarchies: a hierarchy of camera models for different targets at different circumstances, a hierarchy of multiresolution images (foveal images), and a hierarchy of filters to achieve automatic target detection and recognition. Targets are detected based on their appearances by maximum discrimiant filters across multiple scales. The maximum discriminant filters are derived by an integration of a limited number of target appearance templates combined with appropriate camera models through Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Templates are incorporated into Linear Phase Coefficient Composite (LPCC) filters to achieve target detection. The proposed approach promises robust target detection/recognition on individual images and image sequences as long as the change in appearance of the target can be described by affine transformations. Even though it is is developed primarily for visual and infrared (IR) HFMV imageries, the proposed approach can be used for other types of images such as images from Synthetic Aperture Radar (SAR) and Laser Radar (LADAR) sensing platforms. The proposed algorithm can be mapped into feedforward neural networks.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government