Refanalin for lung preservation and transplantation

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44HL080806-02
Agency Tracking Number: HL080806
Amount: $2,075,080.00
Phase: Phase II
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Small Business Information
ANGION BIOMEDICA CORP, 1050 Stewart Ave., Garden City, NY, 11530
DUNS: 053129065
HUBZone Owned: Y
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 WEIZHONG CAI
 (516) 562-1140
 WCAI@ANGION.COM
Business Contact
Phone: (516) 326-1200
Email: igoldberg@angion.com
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): Lung transplantation is the only effective treatment modality for patients with end-stage lung disease. Ischemia-reperfusion injury, associated with the retrieval, storage and transplantation of the lung is a major immu ne-independent factor adversely affecting early graft function, graft viability and recipient morbidity and mortality. Marginal donor lungs, are even more susceptible to ischemia-reperfusion injury, and often fail transplantation. Scatter factor/hepatocyte growth factor has significant protective activity in the setting of pulmonary ischemia-reperfusion injury and additionally, favors pulmonary epithelial repair and regeneration. However its clinical use is limited by the logistical difficulties associated with its administration. During our Phase I program, we have identified Refanalin, an organic small molecule scatter factor/hepatocyte growth factor mimetic that improves lung function secondary to ischemia-reperfusion injury, attenuates pulmonary epitheli al death and promotes epithelial regeneration. In a preclinical model of lung cold preservation and transplantation, Refanalin treatment reduced roentgenographic alveolar infiltration, improved pulmonary function and preserved pulmonary microarchitecture. The present Phase II makes an in-depth evaluation of Refanalin efficacy in clinically relevant models of lung transplantation. By attenuating allograft dysfunction and preventing allograft failure, Refanalin can reduce recipient morbidity and mortality. By attenuating ischemia- reperfusion injury in the marginal lung, Refanalin can salvage an otherwise discarded organ, and increase the donor pool. PUBLIC HEALTH RELEVANCE: A small molecule cytoprotective that can be added to the lung preservation solution an d administered to graft recipient has significant clinical potential in lung and other solid organ transplantation.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government