A Novel Approach for Real-time Proteomics in Live Cells

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44RR024325-03
Agency Tracking Number: RR024325
Amount: $1,130,450.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: NCRR
Solicitation Number: PHS2010-2
Small Business Information
POWERHOUSE PROTEOMIC SYSTEMS, LLC
1623 CATALINA WAY, ZIONSVILLE, IN, -
DUNS: 602491495
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 VAIDYANATHAN SUBRAMANIAM
 () -
 VAIDYA@POWERPROT.COM
Business Contact
 VAIDYANATHAN SUBRAMANIAM
Phone: (317) 640-2266
Email: vaidya@powerprot.com
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): The ultimate goal of this SBIR project is to develop a novel proteomic system that will enable the real- time expression profiling of proteins in live murine embryonic stem (mES) cells and in differentiated cells derived there from. The first step involves the establishment of a library of fluorescent trap mES cell lines, each of which will harbor a single fluorescently-tagged protein. The fluorescence in each cell of a particular clonal line will serve as a reporter for the expression and subcellular localization of the tagged protein in that cell line. Such a library of clonal fluorescently-tagged lines can be subjected to quantitative fluorescence microscopy in multiwell live-cell arrays, to enable the simultaneous real-time expression profiling of multiple proteins in live cells under various culture conditions. In Phase I we demonstrated the feasibility of establishing a large and diverse protein-trap library using our approach. This proposed Phase II effort will be focused generating a library of at 1500 unique fluorescent protein-trap mES cell lines. Individual cell lines from such a library of fluorescently protein-trap mES lines can also be used as versatile protein-specific research tools as they can be manipulated in culture into different tissue-types or used for the generation of transgenic mice when desired. Many also these cell lines can also be used to design novel powerful cell-based assays. Therefore this proposed Phase II project will result in the generation of a versatile and diverse proteomic research resource in mES cells. PUBLIC HEALTH RELEVANCE: The ultimate aim of this SBIR project is to develop a system that will enable researchers to monitor the location and levels of hundreds of proteins simultaneously in living cells. Such a system will be useful in researching a wide variety of biological processes, including understanding the molecular basis of a number of human diseases. Further, such a system can be applied to the identification therapeutic targets and the creation of powerful drug-screening platforms to identify potential therapeutic agents that may cure these diseases.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government