Outbreak detection:combinatorial tests for small samples

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44AI077146-02
Agency Tracking Number: AI077146
Amount: $749,911.00
Phase: Phase II
Program: SBIR
Awards Year: 2009
Solicitation Year: 2009
Solicitation Topic Code: N/A
Solicitation Number: PHS2009-2
Small Business Information
DUNS: 178047015
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (631) 751-4350
Business Contact
Phone: (631) 751-4350
Research Institution
DESCRIPTION (provided by applicant): In delimited populations, such as nursing homes, day care centers, prisons, hospitals, and cruise ships, serious outbreaks of illness generally produce small absolute numbers of disease incidence. Moreover, these groups are often more susceptible to disease than the general population (e.g. Garibaldi et al. 1981, Nimri 1994, March et al. 2000). Additionally, they can have broad effect on the general population, acting as disease reservoirs and leading to increased overall incidence. However, these limited populations cannot be monitored effectively using traditional statistical techniques due to the sparseness of observed incidence, even under epidemic scenarios. The temporal progression of outbreaks and the social-contact mediated dynamics within these smaller groups instead lend themselves directly to exact combinatorial methods. This project will formulate computational algorithms and develop convenient software that implements ten exact combinatorial statistical tests for real-time use by front-line and drop-in surveillance programs focusing on limited or fixed small populations. These tests include: (1) maximum number of cases, (2) linear discrete scan, (3) the visitors test, (4) range-scan, (5) longest run of empty cells, (6) empty cells, (7) variant max test, (8) extreme values, (9) binomial maximum, and (10) hypergeometric maximum. These tests will be formulated in terms of space-time units, in the sense of the Ederers-Myers-Mantel test, allowing generalizations that account for changes in population over time and across space, while maintaining exactness of the p-values. Although limited tables for a few of these tests have been published, no general algorithms have heretofore been described for any of these methods. During the Phase I project, feasibility was demonstrated by formulating computational algorithms for four of the ten tests, implementing them in software, and preliminarily studying their sensitivity and power for detecting outbreaks in real and simulated data. The performance of the new algorithms was compared to the results of applying a standard statistical technique that assumes large sample size. In Phase II, computational algorithms will be developed for the remaining exact statistics and all will be implemented in a user-friendly software package. The software will be modular in design, allowing for the incorporation of new methods as they are developed. More comprehensive sensitivity, specificity and time-to-detection analyses will be conducted using Monte Carlo methods to generate outbreak scenarios with alternate clustering mechanisms. The results will lead to guidance regarding which methods are best for detecting particular types of outbreaks. PUBLIC HEALTH RELEVANCE: This project will develop exact statistical methods and software for use by public health professionals to detect clusters of disease in temporal incidence data. Unlike traditional cluster detection methods, these exact methods are reliable when sample sizes are very small, or when background incidence rates are very low. They should therefore be useful in monitoring disease outbreaks, or other non-random patterns of events of health concern, amid sparse data associated with institutional settings such as nursing homes, schools, hospitals, prisons, cruise ships, or particular high-risk behavior groups.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government