Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$599,561.00
Award Year:
2010
Program:
SBIR
Phase:
Phase II
Contract:
NNX10CA70C
Agency Tracking Number:
084987
Solicitation Year:
2008
Solicitation Topic Code:
X7.01
Solicitation Number:
n/a
Small Business Information
Quest Product Development Corporation
4900 Iris Street, Wheat Ridge, CO, 80033-2215
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
958218406
Principal Investigator:
Scott Dye
Principal Investigator
(303) 670-5088
sdye@quest-corp.com
Business Contact:
Alan Kopelove
Business Official
(303) 670-5088
alank@quest-corp.com
Research Institution:
n/a
Abstract
Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required during extended missions and lengthy on-orbit times. Heat flow through multilayer insulation is usually the largest heat leak in cryogenic systems, so improvements are desirable. Load Responsive Multi-Layer Insulation (LRMLI) is an innovative new technology using micro-molded polymer dynamic spacers that provide high performance insulation both in-atmosphere and on-orbit. LRMLI under atmospheric pressure compresses dynamic spacers to support an integrated, thin vacuum shell for high performance in-atmosphere operation, and disconnects the spacers during on-orbit/lunar surface operation to reduce heat leak and provide ultra-high performance thermal insulation. LRMLI was successfully proven feasible in Phase I work, reaching TRL4. A LRMLI prototype was built and tested and a 3-layer, 0.25" thick blanket demonstrated 7.1 W/m2 (0.19 mW/m-K) heat leak for on-orbit and 14.3 W/m2 (0.34 mW/m-K) for in-atmosphere operation. Equal heat leak on-orbit of a 0.25" LRMLI blanket (2.1 kg/m2) would require 16" of SOFI (15 kg/m2), with LRMLI having a 64X advantage in thickness and a 7X advantage in mass. LRMLI insulation can provide superior cryogen insulation during ground hold, launch and on-orbit/vacuum conditions without need for purge. Total heat gain into cryogenic systems could be substantially reduced. Terrestrial non-NASA applications include LH2 powered aircraft and cars in development. This proposal is to further develop LRMLI toward commercialization. Tasks proposed include a study of both NASA& non-NASA applications to select two for further optimization, next generation design of dynamic spacers and modular vacuum shells, and building and testing prototypes in realistic environments such as a 3' diameter cryotank similar to a selected use like NASA Altair or Boeing HALE tanks.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government