New Tracking Approach for 3D Vascular Ultrasound

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$100,000.00
Award Year:
2003
Program:
SBIR
Phase:
Phase I
Contract:
1R43EB000581-01A1
Agency Tracking Number:
EB000581
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
ASCENSION TECHNOLOGY CORPORATION
107 CATAMOUNT DRIVE, MILTON, VT, 05468
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
WESTLEY ASHE
(802) 893-6657
WASHE@ASCENSION-TECH.COM
Business Contact:
JACK SCULLY
(802) 893-6657
JSCULLY@ASCENSION-TECH.COM
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): Ultrasound is widely used for imaging of blood vessels because it is non-invasive, real-time, and relatively inexpensive. Reliable quantitative evaluation of blood vessels plays a pivotal role in cardiovascular disease diagnosis and follow-up intervention to avoid progression to life or limb-threatening stages. These studies require accurate vessel measurement for size analysis and registration between serial studies for monitoring disease progression before and/or after vascular repair. Sites of particular interest are (1.) carotid arteries for risk of stroke, (2.) lower-limb bypass grafts for risk of limb loss, and (3.) abdominal aortic aneurysms for risk of rupture. Newly developed endo-vascular treatments further demand highly accurate 3D reconstructions of vessels for follow-up to assure success of the procedure or to evaluate the efficacy of the devices. A major constraint to 3D vascular imaging is the imprecision and mechanical restrictions of positioning tools. Magnetic tracking overcomes line-of-sight and mechanical restrictions, but has range limitations and distortion caused by nearby metal. Optical technology is precise but suffers from occlusion, high cost, and bulkiness. For clinical acceptability, a new approach is needed to overcome limitations while allowing precise measurment of vascular structures and/or changes. The Phase I goal will prove the feasibility of a new, hybrid (magnetic-optical) tracking technology for use in 3D vascular imaging. Accuracy of 0.5 mm/0.5 degree is the first design goal. Phase II product goals will be: (1.) Accurate (0.1mm/0.07degree) measurement of a sensor attached to an ultrasound scanhead, (2.) freedom to track the scanhead the length of an adult limb of a patient lying on a standard medical procedural table, (3.) no data impairment due to metallic distortion or noise interference. Full development will enable clinicians to quantitatively analyze 3D reconstructions as a precise means of assessing morphological changes over time, compared to current 2D slice-by-slice delineation and interpretation of vessel boundaries. The new technology will also further the development of new imageguided techniques for use in minimally-invasive procedures.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government