Variable Emissivity Electrochromics using Ionic Electrolytes and Low Solar Absorptance Coatings

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX09CA68C
Agency Tracking Number: 074830
Amount: $599,988.00
Phase: Phase II
Program: SBIR
Awards Year: 2009
Solicitation Year: 2007
Solicitation Topic Code: S3.02
Solicitation Number: N/A
Small Business Information
500 James Street, Suite 7, Lakewood, NJ, 08701-4043
DUNS: 807772942
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: Y
Principal Investigator
 Prasanna Chandrasekhar
 Principal Investigator
 (732) 901-9096
Business Contact
 Prasanna Chandrasekhar
Title: Business Official
Phone: (732) 901-9096
Research Institution
This work further developed a highly promising variable emissivity technology for spacecraft thermal control, based on unique conducting polymer (CP) electrochromics combined with ionic electrolytes, developed earlier by this firm (Air Force, JPL) with: Extremely thin (< 0.2 mm), flexible (plastic), lightweight (0.192 kg/m^2), variable area, "skin-like" construction; Delta-Emittance > 0.4, emittance range 0.15 to 0.90; power 40 micro-W/cm^2; proven space durability (thermal vacuum, atomic-O, VUV, solar wind), operating temperature (-)70 to (+)105 C); use of ionic electrolytes with zero vapor pressure needing no seal; low cost (est. $5K/m^2). A technical hurdle in the earlier-generation technology, of high solar absorptance (values up to 0.8) in the dark, high-emissivity state, remained, the sole hurdle hindering implementation of the technology. The Phase 1 introduced the new innovation of unique, proprietary IR-transparent coatings lowering the solar absorptance (Alpha(s)) of the variable emittance devices ("skins") drastically. In Phase 1, the best coatings yielded Alpha(s) of 0.306, emittance of 0.383 for the light state, and Alpha(s) 0.454, emittance 0.841 for the dark state (Delta emittance 0.458), with a calculated temperature under direct sunlight in space of < 60 C. Devices endured thermal vacuum > 110 days, VUV, atomic-O exposure, abrasion tests. Calorimetric emittance measurements under space vacuum were identical to emissometer measurements in air. In Phase 2, the primary objective will be ground space qualification and a TRL of 7 or higher, with an extensive series of tests to include: thermal vacuum, thermal cycling, solar wind, atomic-O, micrometeoroid, vibration, ESD. These will be done in our labs as well as at several partner labs, including two large aerospace companies who are Phase 2 commercial partners, and several outsourcing vendors. At least one firm spaceflight opportunity has been identified. Expected TRL at end of Phase 2 is 7-8.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government