SBIR Phase I: Heat Spreader Using Nanofluid Oscillating Heat Pipes

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 0912440
Agency Tracking Number: 0912440
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2009
Solicitation Year: N/A
Solicitation Topic Code: EL
Solicitation Number: NSF 08-548
Small Business Information
1000 Pannell Street, Suite A, Columbia, MO, 65201
DUNS: 808369792
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Peng Cheng
 (573) 239-4297
Business Contact
 Peng Cheng
Title: DEng
Phone: (573) 239-4297
Research Institution
This Small Business Innovation Research (SBIR) Phase I proposal describes a heat spreader embedded with a nanolfuid oscillating heat pipe (OHP) that will meet the cooling needs of high power density electronics by utilizing: 1) the extra-high heat transfer coefficient of thin film evaporation; 2) the elevated thermal conductivities of nanofluids; and 3) the enhanced heat transfer of thermally-excited oscillating motions. Although the advantages of nanofluid OHPs have been proven in academic settings, commercial heat spreaders embedded with nanofluid OHPs have yet to be developed. The proposed research will: first develop a mathematical model of the heat transfer performance; then investigators will fabricate a commercial-scale prototype with a low-cost production process; and, finally, empirical results will be compared to company's modeled results and those of potential users. There is a pressing need for high heat flux, low cost heat transfer innovations. Computer makers, chip manufacturers, telecommunications companies, and other high-tech electronics providers cannot develop high power density solutions without cost-effective, micro-scale coolers. Given the absence of such a technology, the proposed nanofluid cooling device will find immediate acceptance in the microelectronics industry. Its performance and low cost will facilitate the aggressive development of faster, smaller computer chips. In doing so, the proposed research benefits all fields impacted by more powerful (or smaller) microprocessors. Outside of microelectronics, there are other fields where high heat transfer rates are needed but not currently provided. For example, the proposed heat spreader embedded with nanofluid OHPs can facilitate an extra high cooling rate in the cellular cryopreservation process and faster cooling rates increase cell survival rates (Jiao et al., 2006).This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).""

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government