Stem Cells for Neonatal Hypoxic-Ischemic Brain Injury

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R41NS055606-01
Agency Tracking Number: NS055606
Amount: $136,500.00
Phase: Phase I
Program: STTR
Awards Year: 2006
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (706) 721-3371
Business Contact
Phone: (216) 431-9900
Research Institution
1120 15TH ST
AUGUSTA, GA, 30912
 Nonprofit college or university
DESCRIPTION (provided by applicant): The emergence of technologies enabling isolation of adult stem cells has allowed evaluation of cell therapeutics for central nervous system disorders with a path for clinical development. Much promise has been shown using stem cells in acute disease models such as stroke or hypoxic injury to the brain, and as well to chronic degenerative diseases such as Parkinson's or spinal cord fracture. We will evaluate physiological benefit derived from treatment of injured animals receiving multi-potent progenitor cells (MPC) derived from bone marrow. We propose to extend pre-clinical efficacy data in a rat model neonatal hypoxic-ischemic injury. Our preliminary data supports a model in which administration of therapeutic cell populations soon after injury provides benefit through trophic influences regulating local inflammatory responses and vascular permeability, vasculogenesis, neurogenesis or recruitment of endogenous stem or progenitor cells. MPC can be isolated from animal and human bone marrow, and using both in vivo and in vitro models produce differentiated progeny of the CMS. Because these cells can be expanded to large cell number, and do not readily stimulate an allogeneic immunological reaction when in a non-differentiated state, they are ideal candidates as an "off-the-shelf clinical product. In our Phase I proposal, we will test both interstitial injection and intra-arterial delivery of stem cells to animals subjected to hypoxic- ischemic injury. We will evaluate route of delivery showing most benefit and test for cell fate and long-term persistence, allowing transition to a Phase II pre-clinical disease model for safety and benefit testing in primates. It is our intention to commercialize a stem cell therapeutic product for acute ischemic injury to the brain.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government